top of page

Anexo: Conceptos físicos fundamentales

Los conceptos físicos fundamentales son aquellos que aparecen en toda teoría física de la materia, y por tanto son conceptos que aparecen en teorías físicas muy diferentes que van desde la mecánica clásica a la teoría cuántica de campos pasando por la teoría de la relatividad y la mecánica cuántica no-relativista. El carácter fundamental de estos conceptos se refleja precisamente en que están presentes en toda teoría física que describa razonablemente la materia, con independencia de los supuestos y simplificaciones introducidas.


En general un concepto físico es interpretable solo en virtud de la teoría física donde aparece. Así la descripción clásica de un gas o un fluido recurre al concepto de medio continuo aun cuando en realidad la materia está formada por átomos discretos, eso no impide que el concepto de medio continuo en el contexto de aplicación de la mecánica de fluidos o la mecánica de sólidos deformables no sea útil. Igualmente la mecánica newtoniana trata el campo gravitatorio como un campo de fuerzas, pero por otra parte la teoría de la relatividad general considera que no existen genuinamente fuerzas gravitatorias sino que los fenómenos gravitatorios son una manifestación de la curvatura del espacio-tiempo.

Conceptos físicos fundamentales

Tipos de entidades físicas
Materia · Partícula · Campo · Onda · Espaciotiempo
· Espacio · Tiempo · Posición

Si se examina una lista larga de conceptos físicos rápidamente se aprecia que muchos de ellos solo tienen sentido o son definibles con todo rigor en el contexto de una teoría concreta y por tanto no son conceptos fundamentales que deban aparecer en cualquier descripción física del universo. Sin embargo, un conjunto reducido de conceptos físicos aparecen tanto en la descripción de la física clásica, como en la descripción de la física relativista y la de la mecánica cuántica. Estos conceptos físicos que parecen necesarios en cualquier teoría física suficientemente amplia son los llamados conceptos físicos fundamentales, una lista no exhaustiva de los mismos podría ser: espacio, tiempo, energía, masa, carga eléctrica, etc.

Magnitudes fundamentales de la física

Una magnitud física fundamental es aquella que aparece en la caracterización de un sistema físico con independencia de la teoría física general elegida. Los sistemas físicos presentan cambios a lo largo del tiempo y tienen localización en el espacio. que los sistemas físicos presentan esas características de localización en el espacio y evolución en el tiempo se les pueden asignar magnitudes físicas relacionadas con simetrías asociadas a la geometría del espacio y el tiempo, éstas son:

 

  • Energía, la energía total de un sistema puede definirse a partir del objeto fundamental que describe dicho sistema el lagrangiano. Cuando las ecuaciones de movimiento que se pueden derivar a partir de dicho lagrangiano son idénticas para cualquier instante de tiempo considerado, entonces la energía total permanece constante y puede establecerse una ley de conservación de la energía para dicho sistema.

  • Energía cinética, casi todos los sistemas físicos constan de partes aislables o localizadas que interactúan entre ellas, la energía cinética es una magnitud asociada al movimiento de cada una de estas partes. Normalmente la energía cinética no es una magnitud conservada o fija porque en su evolución temporal los sistemas pueden sufrir cambios que hacen que la energía menos la energía cinética (energía de interacción) no permanezca constante. La energía cinética es una magnitud importante tanto en la mecánica clásica, como la mecánica relativista, como en la mecánica cuántica no relativista.
     

Si se considera la acción de grupos de simetría sobre un espacio-tiempo pueden definirse algunas magnitudes fundamentales más como:

 

  • Momento angular, está asociada a rotaciones, cuando el sistema presenta invariancia bajo transformaciones de rotación entonces puede definirse una ley de conservación del momento angular, asociada al hecho de que cierta magnitud permanece invariable a lo largo de la evolución del sistema.

  • Momentum, está asociada a traslaciones, cuando el sistema presenta invariancia bajo traslaciones entonces puede definirse una ley de conservación del momentum, asociada al hecho de que cierta magnitud permanece invariable a lo largo de la evolución del sistema.
     

Otras dos propiedades importantes son:

 

  • Masa, aunque en mecánica clásica se la trata como una magnitud conservada, su conservación es sólo aproximada, y en el resto de teorías físicas, sólo la masa de las partículas fundamentales parece tener una significación física importante, de hecho, todas las partículas del mismo tipo siempre tienen la misma masa, lo cual se refleja en que el lagrangiano que describe dichas partículas contiene un término asociado a esa masa siempre de la misma forma.

  • Carga eléctrica, en todos los sistemas físicos conocidos es una magnitud conservada, asociada a cierta simetría interna, no asociada, por tanto, a relaciones puramente geométricas del espacio-tiempo.


Una magnitud de carácter estadístico sobre la estructura del sistema es la:

  • Entropía, otra propiedad estadística importante que aparece en sistemas formados por un número muy grande de partículas es la entropía, que aparece tanto en mecánica estadística clásica como en mecánica estadística cuántica.

Entidades físicas

  • Espacio-tiempo. La entidad más importante en física está constituida por las relaciones geométricas y de variación a lo largo del espacio y el tiempo de las propiedades físicas medibles. Todas esas propiedades se comprenden bien introduciendo una entidad abstracta conocida como espacio-tiempo. Las diversas teorías físicas modelizan las relaciones espaciales y temporales de diferente manera, así en mecánica clásica las relaciones temporales son absolutas (ver tiempo absoluto), por lo que con las relaciones espaciales y temporales son idénticas para cualquier observador. En mecánica relativista, sin embargo, no puede definirse un espacio y un tiempo único percibido por igual por todos los observadores, sino simplemente una entidad cuatridimensional más abstracta conocida como espacio-tiempo. En teoría cuántica de campos dependiendo del enfoque existen diversas maneras de concebir el espacio-tiempo, pero debido a la inexistencia de una teoría de la gravedad cuántica adecuada no existe un modelo genuinamente cuántico de espaciotiempo. A partir del concepto de espacio-tiempo pueden construirse otras entidades y conceptos geométricos derivados como: espacio, tiempo, posición, velocidad, etc.

 

  • Materia. La otra entidad física importante está formada por todos aquellos fenómenos que se propagan, desarrollan o tienen lugar dentro del espacio-tiempo, es decir, todos los fenómenos físicos sometidos a relaciones espacio-temporales. Las manifestaciones físicas dentro del espacio-tiempo se conocen genéricamente como materia. Y existen diversas maneras de modelizar la materia según el tipo de problema físico.

Construcciones teóricas fundamentales

El desarrollo histórico de la física teórica ha llevado a formular conceptos generales y a construir objetos matemático-formales para el estudio de los sistemas físicos. Aunque cada teoría física difiere en su formulación concreta, ya que pretenden explicar hechos experimentales con diferente nivel de profundidad o enfoque, existen algunos conceptos comunes a todas las teorías físicas:

 

  • Estado físico es el conjunto de magnitudes que se describen máximamente como es o como se comporta un sistema físico en un cierto momento.

  • Ecuación de movimiento, los cambios del estado físico a lo largo del tiempo están gobernados por las ecuaciones de movimiento o leyes de evolución temporal. Establecer las leyes de evolución temporal requiere hacer algunas observaciones experimentales sobre como se comporta un sistema, y teorizar sobre la existencia de ciertos invariantes, para poder construir el llamado lagrangiano, a partir del cual se pueden derivar mediante las ecuaciones de Euler-Lagrange las ecuaciones del movimiento.

  • Lagrangiano es el objeto físico fundamental que permite describir como se cambiará el estado físico de un sistema a medida que evolucione en el tiempo. La construcción de un lagrangiano adecuado para un sistema físico no es trivial. Modernamente es común postular diferentes formas de lagrangianos y ver cuales son las consecuencias físicas que se derivan de una y otra forma, lo cual permite decidir, mediante la observación qué lagrangianos pueden describir adecuadamente ciertos sistemas.

  • Acción es un escalar, que resulta de la integración del lagrangiano sobre una subregión de una variedad o subvariedad invariante para cualquier observador. En mecánica clásica para problemas con un número finito de grados de libertad esta subvariedad de integración es unidimensional (tiempo), mientras que para sistemas con un número no finito de grados de libertad se requiere una integración sobre una región del espacio-tiempo de volumen no nulo. Básicamente la acción y el lagrangiano contienen el mismo tipo de información sobre un sistema físico.

  • Ley de conservación, cuando el lagrangiano o las ecuaciones de movimiento presentan cierta propiedad de simetría o invariancia bajo un conjunto de transformaciones, siempre puede identificarse alguna magnitud física que permanece invariante a lo largo de la evolución temporal del sistema.

Entidades
Construcciones

Física de la materia condensada

La física de la materia condensada es la rama de la física que estudia las características físicas macroscópicas de la materia, tales como la densidad, la temperatura, la dureza o el color de un material. En particular, se refiere a las fases «condensadas» que aparecen siempre en que el número de constituyentes en un sistema sea extremadamente grande y que las interacciones entre los componentes sean fuertes, a diferencia de estar libres sin interactuar. Los ejemplos más familiares de fases condensadas son los sólidos y los líquidos, que surgen a partir de los enlaces y uniones causados por interacciones electromagnéticas entre los átomos. Entre las fases condensadas más exóticas se cuentan las fases superfluidas y el condensado de Bose-Einstein, que se encuentran en ciertos sistemas atómicos sometidos a temperaturas extremadamente bajas, la fase superconductora exhibida por los electrones de la conducción en ciertos materiales, y las fases ferromagnética y antiferromagnética de espines en redes atómicas. La física de la materia condensada busca hacer relaciones entre las propiedades macroscópicas, que se pueden medir y el comportamiento de sus constituyentes a nivel microscópico o atómico y así comprender mejor las propiedades de los materiales.

1.jpg

Celda hexagonal del niobato de litio.

La física de la materia condensada es la rama más extensa de la física contemporánea. Como estimación, un tercio de todos los físicos norteamericanos se identifica a sí mismo como físicos trabajando en temas de la materia condensada. Históricamente, dicho campo nació a partir de la física del estado sólido, que ahora es considerado como uno de sus subcampos principales. El término física condensada de la materia fue acuñado, al parecer, por Philip Anderson, cuando renombró a su grupo de investigación, hasta entonces teoría del estado sólido, en 1967. En 1978, la División de Física del Estado Sólido de la American Physical Society fue renombrada como División de Física de Materia Condensada. La física de la materia condensada tiene una gran superposición con áreas de estudio de la química, la ciencia de materiales, la nanotecnología y la ingeniería.

Una de las razones para que la física de materia condensada reciba tal nombre es que muchos de los conceptos y técnicas desarrollados para estudiar sólidos se aplican también a sistemas fluidos. Por ejemplo, los electrones de conducción en un conductor eléctrico forman un tipo de líquido cuántico que tiene esencialmente las mismas características que un fluido conformado por átomos. 

De hecho, el fenómeno de la superconductividad, en el cual los electrones se condensan en una nueva fase fluida en la cual puedan fluir sin disipación, presenta una gran analogía con la fase superfluida que se encuentra en el helio-3 a muy bajas temperaturas.

Física molecular

La física molecular es la rama de la física que estudia los problemas relacionados con la estructura atómica de la materia y su interacción con el medio, es decir con la materia o la luz.


Por ejemplo, se tratan problemas como dinámica y de reacciones, dispersión, interacciones con campos electromagnéticos estáticos y dinámicos, enfriamiento y atrapamiento de átomos, interferometría atómica, interacciones de haces de iones y átomos con superficies y sólidos. Además, tiene múltiples conexiones con la biología, la fisicoquímica, las ciencias de los materiales, la óptica, la física de la atmósfera, la física del plasma y la astrofísica, entre otras. Desempeña un papel fundamental en la solución de preguntas fundamentales sin resolver en el estudio de los átomos y las moléculas.


La física molecular incluye tratamientos tanto clásicos como cuánticos, ya que puede tratar sus problemas desde puntos de vista microscópicos o macroscópicos.

moleculare
Diamond_animation.gif

Estructura del diamante.

Física atómica

La física atómica es la rama de la física que estudia las propiedades y el comportamiento de los átomos (electrones y núcleos atómicos) así como las interacciones materia-materia y luz-materia en la escala de átomos individuales. El estudio de la física atómica incluye la forma en la cual los electrones están organizados alrededor del núcleo y los procesos mediante los cuales este orden puede modificarse, también comprende los iones, así como a los átomos neutros y a cualquier otra partícula que sea considerada parte de los átomos. La física atómica incluye tratamientos tanto clásicos como cuánticos, ya que puede tratar sus problemas desde puntos de vista microscópicos y macroscópicos.

atomica
1.jpg

Compuestos formados por moléculas

1.jpg

Esquema que explica la emisión alfa.

La física atómica y la física nuclear tratan cuestiones distintas, la primera trata con todas las partes del átomo, mientras que la segunda lo hace solo con el núcleo del átomo, siendo este último especial por su complejidad. Se podría decir que la física atómica trata con las fuerzas electromagnéticas del átomo y convierte al núcleo en una partícula puntual, con determinadas propiedades intrínsecas de masa, carga y espín.


La investigación actual en física atómica se centra en actividades tales como el enfriamiento y captura de átomos e iones, lo cual es interesante para eliminar «ruido» en las medidas y evitar imprecisiones a la hora de realizar otros experimentos o medidas (por ejemplo, en los relojes atómicos); aumentar la precisión de las mediciones de constantes físicas fundamentales, lo cual ayuda a validar otras teorías como la relatividad o el modelo estándar; medir los efectos de correlación electrónica en la 

estructura y dinámica atómica y la medida y comprensión del comportamiento colectivo de los átomos de gases que interactúan débilmente (por ejemplo, en un condensado de Bose-Einstein de pocos átomos).

Fisicanucleare

Física nuclear

La física nuclear es una rama de la física que estudia las propiedades, comportamiento e interacciones de los núcleos atómicos. En un contexto más amplio, se define la física nuclear y de partículas como la rama de la física que estudia la estructura fundamental de la materia y las interacciones en entre las partículas subatómicas.


La física nuclear es conocida mayoritariamente por el aprovechamiento de la energía nuclear en centrales nucleares y en el desarrollo de armas nucleares, tanto de fisión nuclear como de fusión nuclear, pero este campo ha dado lugar a aplicaciones en diversos campos, incluyendo medicina nuclear e imágenes por resonancia magnética, ingeniería de implantación de iones en materiales y datación por radiocarbono en geología y arqueología.

altasenergias

Física de partículas o de altas energías

La física de partículas es la rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos. Se conoce a esta rama también como física de altas energías, debido a que a muchas de estas partículas solo se les puede ver en grandes colisiones provocadas en los aceleradores de partículas.

 

En la actualidad, las partículas elementales se clasifican siguiendo el llamado modelo estándar en dos grandes grupos: bosones y fermiones. Los bosones tienen espín entero (0, 1 o 2) y son las partículas que interactúan con la materia, mientras que los fermiones tienen espín semientero (1/2 o 3/2) y son las partículas constituyentes de la materia. En el modelo estándar se explica cómo las interacciones fundamentales en forma de partículas (bosones) interactúan con las partículas de materia (fermiones). Así, el electromagnetismo tiene su partícula llamada fotón, la interacción nuclear fuerte tiene al gluón, la interacción nuclear débil a los bosones W y Z y la gravedad a una partícula hipotética llamada gravitón. Entre los fermiones hay más variedad; se encuentran dos tipos: los leptones y los quarks. En conjunto, el modelo estándar contiene 24 partículas fundamentales que constituyen la materia (12 pares de partículas y sus correspondientes anti-partículas) junto con tres familias de bosones de gauge responsables de transportar las interacciones.

1.jpg

Diagrama de Feynman de una desintegración beta, proceso mediante el cual un neutrón puede convertirse en protón. En la figura, uno de los tres quarks del neutrón de la izquierda (quark d en azul) emite una partícula W-, pasando a ser un quark (u); la partícula emitida (W-) se desintegra en un antineutrino y un electrón.

Los principales centros de estudio sobre partículas son el Laboratorio Nacional Fermi o Fermilab, en Estados Unidos y el Centro Europeo para la Investigación Nuclear o CERN, en la frontera entre Suiza y Francia. En estos laboratorios lo que se logra es obtener energías similares a las que se cree que existieron en el Big Bang y así se intenta tener cada vez más pruebas del origen del universo.

Astrofísica

La astrofísica es el desarrollo y estudio de la física aplicada a la astronomía. Estudia las estrellas, los planetas, las galaxias, los agujeros negros y demás objetos astronómicos como cuerpos de la física, incluyendo su composición, estructura y evolución. La astrofísica emplea la física para explicar las propiedades y fenómenos de los cuerpos estelares a través de sus leyes, fórmulas y magnitudes. El inicio de la astrofísica fue posiblemente en el siglo xix cuando gracias a los espectros se pudo averiguar la composición física de las estrellas. 

1.jpg

Imagen de la galaxia de Andrómeda en infrarrojo.

Una vez que se comprendió que los cuerpos celestes están compuestos de los mismos que conforman la Tierra y que las mismas leyes de la física y de la química se aplican a ellos, nace la astrofísica como una aplicación de la física a los fenómenos observados por la astronomía. La astrofísica se basa, pues, en la asunción de que las leyes de la física y la química son universales, es decir, que son las mismas en todo el universo.

Debido a que la astrofísica es un campo muy amplio, los astrofísicos aplican normalmente muchas disciplinas de la física, incluyendo la física nuclear (véase Nucleosíntesis estelar), la física relativísta, la mecánica clásica, el electromagnetismo, la física estadística, la termodinámica, la mecánica cuántica, la física de partículas, la física atómica y molecular. Además, la astrofísica está íntimamente vinculada con la cosmología, que es el área que pretende describir el origen del universo.

Esta área, junto a la física de partículas, es una de las áreas más estudiadas y más apasionantes del mundo contemporáneo de la física. Desde que el telescopio espacial Hubble nos brindó detallada información de los más remotos confines del universo, los físicos pudieron tener una visión más objetiva de lo que hasta ese momento eran solo teorías.


En la actualidad, todos o casi todos los astrónomos tienen una sólida formación en física y las observaciones siempre se ponen en su contexto astrofísico, así que los campos de la astronomía y astrofísica están frecuentemente enlazados. Tradicionalmente, la astronomía se centra en la comprensión de los movimientos de los objetos, mientras que la astrofísica busca explicar su origen, evolución y comportamiento. Actualmente, los términos «astronomía» y «astrofísica» se suelen usar indistintamente para referirse al estudio del universo.

Biofísica

La biofísica es la ciencia que estudia la biología con los principios y métodos de la física para describir los fenómenos físicos del actuar de las células y organismos vivos. Incluye la biomecánica, el bioelectromagnetismo, así como la aplicación de la termodinámica y otras disciplinas a la comprensión del funcionamiento de los sistemas biológicos. Un intento reciente incluye la aplicación de mecánica cuántica y su carácter probabilístico de la a sistemas biológicos, lo que permite obtener métodos puramente físicos para la explicación de propiedades biológicas.

Se discute si la biofísica es una rama de la física, de la biología o de ambas. Se puede decir que el intercambio de conocimientos es únicamente en dirección a la biología, ya que esta se ha ido enriqueciendo de los conceptos físicos y no viceversa. Desde un punto de vista se puede concebir que los conocimientos y enfoques acumulados en la física «pura» se pueden aplicar al estudio de sistemas biológicos. En ese caso la biofísica le aporta conocimientos a la biología, pero no a la física. Sin embargo, la biofísica ofrece a la física evidencia experimental que permite corroborar teorías.

Biofisica
1.jpg

La Kinesina utiliza dinámica de dominios de proteínas a nanoescalas para "caminar" a lo largo de un microtúbulo.

fis2.jpg

La biofísica podría describir físicamente lo que ocurre en nuestro cerebro.

Ejemplos en ese sentido son la física de la audición, la biomecánica, los motores moleculares, comunicación molecular, entre otros campos de la biología abordada por la física. La biomecánica, por ejemplo, consiste en la aplicación de conceptos de la dinámica clásica y la mecánica de sólidos deformables al comportamiento cinemático, dinámico y estructural de las diferentes partes del cuerpo.

El término biofísica fue introducido originalmente por Karl Pearson en 1892. El término biofísica también se utiliza regularmente en el ámbito académico para indicar el estudio de las cantidades físicas (por ejemplo, corriente eléctrica, temperatura, estrés, entropía) en los sistemas biológicos. Otras ciencias biológicas también investigan las propiedades biofísicas de los organismos vivos, como la biología molecular, la biología celular, la biología química y la bioquímica.

Se estima que durante los inicios del siglo xxi, la confluencia de físicos, biólogos y químicos a los mismos laboratorios aumentará. Los estudios en neurociencia, por ejemplo, han aumentado y cada vez han tenido mayores frutos desde que se comenzó a implementar las leyes del electromagnetismo, la óptica y la física molecular al estudio de las neuronas.


Otros estudios consideran que existen ramas de la física que se deben desarrollar a profundidad como problemas físicos específicamente relacionados con la materia viviente. Así, por ejemplo, los polímeros biológicos (como las proteínas) no son lo suficientemente grandes como para poderlos tratar como un sistema mecánico, a la vez que no son lo suficientemente pequeños como para tratarlos como moléculas simples en solución. Los cambios energéticos que ocurren durante una reacción química catalizada por una enzima, o fenómenos como el acoplamiento químico-osmótico parecen requerir más de un enfoque físico teórico profundo que de una evaluación biológica.


Entre esos dos extremos aparecen problemas como la generación y propagación del impulso nervioso donde se requiere un pensamiento biológico, más un pensamiento físico así como algo cualitativamente nuevo que aparece con la visión integradora del problema. 


Una subdisciplina de la biofísica es la dinámica molecular, que intenta explicar las propiedades químicas de las biomoléculas a través de su estructura y sus propiedades dinámicas y de equilibrio.

Resumen de las disciplinas físicas

Clasificación de la física con respecto a teorías:

 

Historia

La historia de la física abarca los esfuerzos y estudios realizados por los maestros que han tratado de entender el porqué de la naturaleza y los fenómenos que en ella se observan: el paso de las estaciones, el movimiento de los cuerpos y de los astros, los fenómenos climáticos, las propiedades de los materiales, entre otros. Gracias a su vasto alcance y a su extensa historia, la física es clasificada como una ciencia fundamental. La mayoría de las civilizaciones de la antigüedad trataron desde un principio explicar el funcionamiento de su entorno; miraban las estrellas y pensaban cómo ellas podían regir su mundo. Esto llevó a muchas interpretaciones de carácter más filosófico que físico; no en vano en esos momentos a la física se le llamaba filosofía natural

Muchos filósofos se encuentran en el desarrollo primitivo de la física, como Aristóteles, Tales de Mileto o Demócrito, ya que fueron los primeros en tratar de buscar algún tipo de explicación a los fenómenos que les rodeaban. Las primeras explicaciones que aparecieron en la antigüedad se basaban en consideraciones puramente filosóficas, sin verificarse experimentalmente. Algunas interpretaciones equivocadas, como la hecha por Claudio Ptolomeo en su famoso Almagesto —«La Tierra está en el centro del Universo y alrededor de ella giran los astros»— perduraron durante miles de años. A pesar de que las teorías descriptivas del universo que dejaron estos pensadores eran erradas en sus conclusiones, estas tuvieron validez por mucho tiempo, casi dos mil años, en parte por la aceptación de la Iglesia católica de varios de sus preceptos, como la teoría geocéntrica.

Dominios Básicos de la física

Aproximación al ámbito de aplicación de diferentes formalismos físicos.

Esta etapa, denominada oscurantismo en la ciencia de Europa, termina cuando el canónigo y científico Nicolás Copérnico, quien es considerado padre de la astronomía moderna, recibe en 1543 la primera copia de su libro, titulado De Revolutionibus Orbium Coelestium. A pesar de que Copérnico fue el primero en formular teorías plausibles, es otro personaje al cual se le considera el padre de la física como la conocemos ahora. Un catedrático de matemáticas de la Universidad de Pisa a finales del siglo xvi cambiaría la historia de la ciencia, empleando por primera vez experimentos para comprobar sus afirmaciones: Galileo Galilei. Mediante el uso del telescopio para observar el firmamento y sus trabajos en planos inclinados, Galileo empleó por primera vez el método científico y llegó a conclusiones capaces de ser verificadas. 

A sus trabajos se les unieron grandes contribuciones por parte de otros científicos como Johannes Kepler, René Descartes, Blaise Pascal y Christian Huygens.

Posteriormente, en el siglo xvii, un científico inglés reunió las ideas de Galileo y Kepler en un solo trabajo, unifica las ideas del movimiento celeste y las de los movimientos en la Tierra en lo que él llamó gravedad. En 1687, Isaac Newton formuló, en su obra titulada Philosophiae Naturalis Principia Mathematica, los tres principios del movimiento y una cuarta ley de la gravitación universal, que transformaron por completo el mundo físico; todos los fenómenos podían ser vistos de una manera mecánica.

El trabajo de Newton en este campo perdura hasta la actualidad, ya que todos los fenómenos macroscópicos pueden ser descritos de acuerdo a sus tres leyes. Por eso durante el resto de ese siglo y en el posterior, el siglo xviii, todas las investigaciones se basaron en sus ideas. De ahí que se desarrollaron otras disciplinas como la termodinámica, la óptica, la mecánica de fluidos y la mecánica estadística. Los conocidos trabajos de Daniel Bernoulli, Robert Boyle y Robert Hooke, entre otros, pertenecen a esta época.

En el siglo xix se produjeron avances fundamentales en la electricidad y el magnetismo, principalmente de la mano de Charles-Augustin de Coulomb, Luigi Galvani, Michael Faraday y Georg Simon Ohm, que culminaron en el trabajo de James Clerk Maxwell en 1855, que logró la unificación de ambas ramas en el llamado electromagnetismo. Además, se producen los primeros descubrimientos sobre radiactividad y el descubrimiento del electrón por parte de Joseph John Thomson en 1897.

Durante el siglo xx, la física se desarrolló plenamente. En 1904, Hantarō Nagaoka había propuesto el primer modelo del átomo, el cual fue confirmado en parte por Ernest Rutherford en 1911, aunque ambos planteamientos serían después sustituidos por el modelo atómico de Bohr, de 1913. En 1905, Einstein formuló la teoría de la relatividad especial, la cual coincide con las leyes de Newton al decir que los fenómenos se desarrollan a velocidades pequeñas comparadas con la velocidad de la luz. 

1.jpg

Dios no juega a los dados con el Universo.
Albert Einstein.


Einstein, deje de decirle a Dios lo que tiene que hacer con sus dados.
Niels Bohr.

En 1915 extendió la teoría de la relatividad especial, formulando la teoría de la relatividad general, la cual sustituye a la ley de gravitación de Newton y la comprende en los casos de masas pequeñas. Max Planck, Albert Einstein, Niels Bohr y otros, desarrollaron la teoría cuántica, a fin de explicar resultados experimentales anómalos sobre la radiación de los cuerpos. En 1911, Ernest Rutherford dedujo la existencia de un núcleo atómico cargado positivamente, a partir de experiencias de dispersión de partículas. En 1925 Werner Heisenberg, y en 1926 Erwin Schrödinger y Paul Adrien Maurice Dirac, formularon la mecánica cuántica, la cual comprende las teorías cuánticas precedentes y suministra las herramientas teóricas para la Física de la materia condensada.

Posteriormente se formuló la teoría cuántica de campos, para extender la mecánica cuántica de acuerdo con la Teoría de la Relatividad especial, alcanzando su forma moderna a finales de la década de 1940, gracias al trabajo de Richard Feynman, Julian Schwinger, Shin'ichirō Tomonaga y Freeman Dyson, los cuales formularon la teoría de la electrodinámica cuántica. Esta teoría formó la base para el desarrollo de la física de partículas. En 1954, Chen Ning Yang y Robert Mills desarrollaron las bases del modelo estándar. Este modelo se completó en los años 1970, y con él fue posible predecir las propiedades de partículas no observadas previamente, pero que fueron descubiertas sucesivamente, siendo la última de ellas el quark top.


Los intentos de unificar las cuatro interacciones fundamentales han llevado a los físicos a nuevos campos impensables. Las dos teorías más aceptadas, la mecánica cuántica y la relatividad general, que son capaces de describir con gran exactitud el macro y el micromundo, parecen incompatibles cuando se las quiere ver desde un mismo punto de vista. Por eso se han formulado nuevas teorías, como la supergravedad o la teoría de cuerdas, donde se centran las investigaciones a inicios del siglo xxi. Esta ciencia no desarrolla únicamente teorías, también es una disciplina de experimentación. Sus hallazgos, por lo tanto, pueden ser comprobados a través de experimentos. Además, sus teorías permiten establecer previsiones sobre pruebas que se desarrollen en el futuro.

Astronomía antigua

La Astronomía es una de las más antiguas ciencias naturales. Las primeras civilizaciones que se remontan a antes del año 3000 a. C., como la de Sumeria, la del antiguo Egipto y la de la Civilización del Valle del Indo, tenían un conocimiento predictivo y una comprensión básica de los movimientos del Sol, la Luna y las estrellas.


Las estrellas y los planetas, que se creía que representaban a los dioses, eran a menudo adorados. Aunque las explicaciones de las posiciones observadas de las estrellas eran a menudo poco científicas y carentes de pruebas, estas primeras observaciones sentaron las bases de la astronomía posterior, ya que se descubrió que las estrellas atravesaban grandes círculos en el cielo, lo que, sin embargo, no explicaba las posiciones de los planetas.

1.jpg

La astronomía del antiguo Egipto queda patente en monumentos como el techo de la tumba de Senemut de la Dinastía XVIII de Egipto.

Según Asger Aaboe, los orígenes de la astronomía occidental se encuentran en Mesopotamia, y todos los esfuerzos occidentales en las ciencias exactas descenderían de la astronomía babilónica. Sin embargo, los astrónomos egipcios dejaron monumentos que muestran el conocimiento de las constelaciones y los movimientos de los cuerpos celestes, habiendo realizado un seguimiento, y existen anotaciones que se remontan a tiempos ancestrales, y que requerirían cálculos y conocimientos muy precisos, mientras que el poeta griego Homero escribió sobre varios objetos celestes en su Ilíada y Odisea; y más tarde, los astrónomos griegos describieron, estudiaron y proporcionaron nombres, que todavía se utilizan hoy en día para la mayoría de las constelaciones visibles desde el hemisferio norte.

Filosofía natural

La Filosofía natural tiene sus orígenes en Grecia durante el período arcaico (650 a. C. - 480 a. C.), cuando los filósofos presocráticos como Tales rechazaron las explicaciones de lo no naturalista para los fenómenos naturales y proclamaron que todo acontecimiento tenía una causa natural. Propusieron ideas verificadas por la razón y la observación, y muchas de sus hipótesis tuvieron éxito al poder explicar las observaciones mediante cálculo y la experimentación.144 Por ejemplo, el atomismo fue encontrado como correcto aproximadamente 2000 años después de ser propuesto por Leucipo y su alumno Demócrito.

Filosofianatural

Física medieval e islámica

El Imperio romano de Occidente cayó en el siglo v, lo que provocó un declive de las actividades intelectuales en la parte occidental de Europa. En cambio, el Imperio romano de Oriente (también conocido como Imperio bizantino) resistió los ataques de los bárbaros, y continuó avanzando en diversos campos del saber, entre ellos la física.


En el siglo vi, Isidoro de Mileto realizó una importante recopilación de las obras de Arquímedes que están copiadas en el Palimpsesto de Arquímedes.


En la Europa del siglo vi, Juan Filopón (Philoponus), un erudito bizantino, cuestionó la enseñanza de la física de Aristóteles y señaló sus defectos. Introdujo la teoría del ímpetu. La física de Aristóteles no fue examinada hasta que apareció Philoponus. A diferencia de Aristóteles, que basaba su física en la argumentación verbal, Philoponus se basó en la observación. Sobre la física de Aristóteles, Philoponus escribió:

1.jpg

La forma básica en que funciona una cámara estenopeica.

"Pero esto es completamente erróneo, y nuestro punto de vista puede ser corroborado por la observación real más eficazmente que por cualquier tipo de argumento verbal. Pues si dejas caer desde la misma altura dos pesos de los cuales uno es muchas veces más pesado que el otro, verás que la relación de los tiempos requeridos para el movimiento no depende de la relación de los pesos, sino que la diferencia de tiempo es muy pequeña. Y así, si la diferencia de pesos no es considerable, es decir, si uno es, digamos, el doble que el otro, no habrá diferencia, o bien una diferencia imperceptible, en el tiempo, aunque la diferencia de peso no es en absoluto despreciable, con un cuerpo que pesa el doble que el otro.

La crítica de Philoponus a los principios aristotélicos de la física serviría de inspiración a Galileo Galilei diez siglos después, durante la Revolución Científica. Galileo citó sustancialmente a Philoponus en sus obras al argumentar que la física aristotélica era defectuosa. En el año 1300 Jean Buridan, profesor de la facultad de artes de la Universidad de París, desarrolló el concepto de ímpetu. Fue un paso hacia las ideas modernas de inercia e impulso.

 

La erudición islámica heredó la física aristotélica de los griegos y durante la Edad de Oro islámica la desarrolló aún más, poniendo especialmente énfasis en la observación y el razonamiento a priori, desarrollando las primeras formas del método científico.


Las innovaciones más notables se produjeron en el campo de la óptica y la visión, que procedieron de los trabajos de muchos científicos como Ibn Sahl, Al-Kindi, Ibn al-Haytham, Al-Farisi y Avicena. La obra más notable fue El Libro de la Óptica (también conocido como Kitāb al-Manāẓir), escrito por Ibn al-Haytham, en el que refutaba de forma concluyente la antigua idea griega sobre la visión, pero también aportaba una nueva teoría.

En El Libro de la Óptica, presentó un estudio del fenómeno de la cámara oscura (su versión milenaria de la cámara estenopeica) y profundizó en el funcionamiento del propio ojo. Utilizando disecciones y los conocimientos de estudiosos anteriores, pudo empezar a explicar cómo entra la luz en el ojo. Afirmó que el rayo de luz se
enfoca, pero la explicación real de cómo la luz se proyecta a la parte posterior del ojo, aunque este hito en sus planteamientos tuvo que esperar hasta 1604. En su Tratado sobre la luz explicó la cámara oscura, cientos de años antes del desarrollo moderno de la fotografía.

El Libro de la Óptica (Kitab al-Manathir), de siete volúmenes, influyó enormemente en el pensamiento de distintas disciplinas, desde la teoría de la percepción visual hasta la naturaleza de la perspectiva en el arte medieval, tanto en Oriente como en Occidente, durante más de 600 años. Muchos estudiosos europeos posteriores y compañeros polímatas, desde Robert Grosseteste y Leonardo da Vinci hasta René Descartes, Johannes Kepler e Isaac Newton, estaban en deuda con él. De hecho, la influencia de la óptica de Ibn al-Haytham se equipara a la de la obra de Newton del mismo título, publicada 700 años después.

La traducción de El Libro de la Óptica tuvo un gran impacto en Europa. A partir de ella, los eruditos europeos posteriores pudieron construir dispositivos que replicaban los que Ibn al-Haytham había construido, y comprender el funcionamiento de la luz. A partir de ello, se desarrollaron cosas tan importantes como gafas, lupas, telescopios y cámaras.

caclasica

Física clásica

La física se convirtió en una ciencia independiente cuando la Europa moderna temprana utilizó métodos experimentales y cuantitativos para descubrir lo que ahora se consideran las leyes de la física. Entre los principales avances de este periodo se encuentran la sustitución del modelo geocéntrico del Sistema Solar por el modelo copernicano heliocéntrico, las leyes que rigen el movimiento de los cuerpos planetarios determinadas por Kepler entre 1609 y 1619, los trabajos pioneros sobre telescopios

astronomía observacional de Galileo en los siglos XVI y XVII, y el descubrimiento y la unificación por parte de Newton de las leyes del movimiento y de la ley de la gravitación universal de Newton, que llegarían a llevar su nombre. Newton también desarrolló el cálculo, el estudio matemático del cambio, que proporcionó nuevos métodos matemáticos para resolver problemas físicos.

El descubrimiento de nuevas leyes en termodinámica, química y electromagnética fue el resultado de un mayor esfuerzo de investigación durante la Revolución Industrial al aumentar las necesidades energéticas. Las leyes que componen la física clásica siguen siendo muy utilizadas para objetos a escalas cotidianas que se desplazan a velocidades no relativistas, ya que proporcionan una aproximación muy cercana en tales situaciones, y teorías como la mecánica cuántica y la teoría de la relatividad se simplifican a sus equivalentes clásicos a tales escalas. Sin embargo, las imprecisiones de la mecánica clásica para objetos muy pequeños y velocidades muy altas condujeron al desarrollo de la física moderna en el siglo xx.

Fimoderna

Física moderna

La física clásica se ocupa generalmente de la materia y la energía en la escala normal de observación, mientras que gran parte de la física moderna se ocupa del comportamiento de la materia y la energía en condiciones extremas o a una escala muy grande o muy pequeña. Por ejemplo, la atómica y la Física nuclear estudian la materia a la escala más pequeña en la que se pueden identificar los elementos químicos.

La física de las partículas elementales encuentra su campo de estudio a una escala aún más pequeña, ya que se ocupa de las unidades más básicas de la materia; esta rama de la física también se conoce como física de alta energía, debido a las energías extremadamente altas necesarias para producir muchos tipos de partículas en los aceleradores de partículas. A esta escala, las nociones ordinarias y comunes de espacio, tiempo, materia y energía ya no son válidas.

Las dos principales teorías de la física moderna presentan una imagen diferente de los conceptos de espacio, tiempo, y materia de la presentada por la física clásica. Mientras la mecánica clásica aproxima la naturaleza como continua, la teoría cuántica se ocupa de la naturaleza discreta de muchos fenómenos a nivel atómico y subatómico y de los aspectos complementarios de las partículas y las ondas en la descripción de dichos fenómenos. La teoría de la relatividad se ocupa de la descripción de los fenómenos que tienen lugar en un marco de referencia que está en movimiento con respecto a un observador: la teoría especial de la relatividad, por un lado, se ocupa del movimiento en ausencia de campos gravitatorios y la teoría general de la relatividad, por otra parte (más amplia y general), del movimiento y su conexión con la gravitación. Tanto la teoría cuántica como la teoría de la relatividad encuentran sus aplicaciones en prácticamente todas las áreas de la física moderna.

1.jpg

Sir Isaac Newton (1643–1727), cuyas leyes del movimiento y de la gravitación universal fueron pilares importantes en la física clásica.

1.jpg

Ibn al-Haytham (c. 965-c. 1040), Libro de la Óptica Libro I, [6.85], [6.86]. El Libro II, [3.80] describe sus experimentos de cámara oscura.

Filosofía

La filosofía de la física se refiere al conjunto de reflexiones filosóficas sobre la interpretación, epistemología y principios rectores de las teorías físicas y la naturaleza de la realidad. Aunque raramente la exposición estándar de las teorías físicas discute los aspectos filosóficos, lo cierto es que las concepciones filosóficas de los científicos han tenido un papel destacado en el desarrollo de dichas teorías. Esto fue notorio a partir de Newton y Kant, llegando a ser muy importante en el siglo xx, cuando la teoría de la relatividad dio lugar a un análisis minucioso de asuntos tradicionalmente objeto de estudio de la filosofía, como la naturaleza del tiempo y el espacio. La filosofía de la física contribuye a través de la crítica de los productos de la física, retroalimentándola.


En muchos aspectos, la física proviene de la filosofía griega. Desde el primer intento de Tales de caracterizar la materia, hasta la deducción de Demócrito de que la materia debería reducirse a un estado invariable, la astronomía ptolemaica de un firmamento cristalino, y el libro de Aristóteles Física (un libro temprano de física, que intentaba analizar y definir el movimiento desde un punto de vista filosófico), varios filósofos griegos avanzaron sus propias teorías de la naturaleza. La física se conoció como filosofía natural hasta finales del siglo xviii.

1.jpg

La dualidad onda-partícula, en el que se aprecia cómo un mismo fenómeno puede ser percibido de dos modos distintos, fue uno de los problemas filosóficos que planteó la mecánica cuántica.

Para el siglo xix, la física se realizó como una disciplina distinta de la filosofía y de las demás ciencias. La física, al igual que el resto de la ciencia, se apoya en la filosofía de la ciencia y en su «método científico» para avanzar en el conocimiento del mundo físico. El método científico emplea el razonamiento a priori así como el razonamiento a posteriori y el uso de la Inferencia bayesiana para medir la validez de una teoría determinada.


El desarrollo de la física ha respondido a muchas preguntas de los primeros filósofos, pero también ha planteado nuevas preguntas. El estudio de las cuestiones filosóficas que rodean a la física, la filosofía de la física, implica cuestiones como la naturaleza del espacio y del tiempo, el determinismo y las perspectivas metafísicas como el empirismo, el naturalismo y el realismo.


Muchos físicos han escrito sobre las implicaciones filosóficas de su trabajo, por ejemplo Laplace, que defendió el determinismo causal, y Schrödinger, que escribió sobre la mecánica cuántica. El físico matemático Roger Penrose había sido llamado platonista por Stephen Hawking,, una opinión que Penrose discute en su libro, El camino a la realidad. Hawking se refirió a sí mismo como un «reduccionista desvergonzado» y discrepó de las opiniones de Penrose.

Principales magnitudes físicas

Las unidades indicadas para cada magnitud son las utilizadas en el Sistema Internacional de Unidades. Las unidades en negrita son básicas, las restantes surgen de otras (son derivadas).

magnitudesicas
bottom of page